Fractal dimension is a mathematical parameter that quantifies the complexity and irregularity of biological structures. In medical sciences, fractal analysis enables quantitative differentiation between normal and pathological tissues, as well as the detection of subtle structural alterations associated with senescence, inflammation and carcinogenesis. Integration with artificial intelligence and machine learning approaches further enhances its diagnostic potential and brings it closer to clinical practice. Despite current limitations related to methodological standardization and interpretation, accumulating evidence suggests that fractal dimension may evolve into a valuable component of digital pathology, otolaryngology and personalized medicine.
Mirny LA. The fractal globule as a model of chromatin architecture in the cell. Chromosome Res. 2011;19(1):37–51.
2.
Valjarevic S, Jovanovic M, Paunovic Pantic J, Pantic I. A novel support vector machine learning approach using fractal and run-length matrix indicators for identifying nuclear changes in laryngeal cancer. Medicinska istraživanja. 2025;58(1):41–7.
3.
Alexiou A, Tsagkaris C, Chatzichronis S, Koulouris A, Haranas I, Gkigkitzis I, et al. The fractal viewpoint of tumors and nanoparticles. Curr Med Chem. 2023;30(3):356–70.
4.
Pantic I, Paunovic Pantic J. Artificial intelligence in chromatin analysis: a random forest model enhanced by fractal and wavelet features. Fractal Fract. 2024;8(8).
5.
Mayerhoefer ME, Materka A, Langs G, Häggström I, Szczypiński P, Gibbs P, et al. Introduction to radiomics. J Nucl Med. 2020;61(4):488–95.
6.
Paunovic J, Vucevic D, Radosavljevic T, Vukomanovic Djurdjevic B, Stankovic S, Pantic I. Effects of iron oxide nanoparticles on structural organization of hepatocyte chromatin: gray level co-occurrence matrix analysis. Microsc Microanal. 2021;27(4):889–96.
7.
Valjarevic S, Jovanovic MB, Miladinovic N, Cumic J, Dugalic S, Corridon PR, et al. Gray-level co-occurrence matrix analysis of nuclear textural patterns in laryngeal squamous cell carcinoma: focus on artificial intelligence methods. Microsc Microanal. 2023;29(3):1220–7.
8.
Valjarevic S, Jovanovic M, Pantic I. Primena savremenih računarskih metoda u dijagnostici i lečenju karcinoma larinksa. MedPodml. 2023;74(5):14–20.
9.
Buruiană A, Șerbănescu MS, Pop B, Gheban BA, Gheban-Roșca IA, Hendea RM, et al. Fractal dimension analysis of the tumor microenvironment in cutaneous squamous cell carcinoma: insights into angiogenesis and immune cell infiltration. Fractal Fract. 2024;8(10).
10.
Mattos AC, Florindo JB, Adam RL, Lorand-Metze I, Metze K. The fractal dimension suggests two chromatin configurations in small cell neuroendocrine lung cancer and is an independent unfavorable prognostic factor for overall survival. Microsc Microanal. 2022;23:1–5.
11.
Gupta S, Savala R, Gupta N, Dey P. Fractal dimension and chromatin textural analysis to differentiate follicular carcinoma and adenoma on fine needle aspiration cytology. Cytopathology. 2020;31(5):491–3.
12.
Weber MC, Schmidt K, Buck A, Kasajima A, Becker S, Li C, et al. Fractal analysis of extracellular matrix for observer-independent quantification of intestinal fibrosis in Crohn’s disease. Sci Rep. 2024;14(1).
13.
Zhang Z, Deng C, Paulus YM. Advances in structural and functional retinal imaging and biomarkers for early detection of diabetic retinopathy. Biomedicines. 2024;12(7).
14.
Pantic I, Harhaji-Trajkovic L, Pantovic A, Milosevic NT, Trajkovic V. Changes in fractal dimension and lacunarity as early markers of UV-induced apoptosis. J Theor Biol. 2012;303:87–92.
15.
Pantic I, Valjarevic S, Cumic J, Paunkovic I, Terzic T, Corridon PR. Gray level co-occurrence matrix, fractal and wavelet analyses of discrete changes in cell nuclear structure following osmotic stress: focus on machine learning methods. Fractal Fract. 2023;7(3).
16.
Silva LG, Silva Monteiro WRS, Aguiar Moreira TM, MAE R, Assis EACP, Souza GT. Fractal dimension analysis as an easy computational approach to improve breast cancer histopathological diagnosis. Appl Microsc. 2021;51(1).
17.
Mandelbrot B. How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension. Science. 1967;156(3775):636–8.
18.
Lieberman-Aiden E, Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 2009;326(5950):289–93.
19.
Shi G, Liu L, Hyeon C, Thirumalai D. Interphase human chromosome exhibits out of equilibrium glassy dynamics. Nat Commun. 2018;9(1).
20.
Jurczyszyn K, Gedrange T, Kozakiewicz M. Theoretical background to automated diagnosing of oral leukoplakia: a preliminary report. J Healthc Eng. 2020;2020(8831161).
21.
Pantić I, Paunović Pantić J, Radojević Škodrić S. Primena fraktalne i teksturalne analize u medicinskoj fiziologiji, patofiziologiji i patologiji. Medicinska istraživanja. 2022;55(3):43–51.
22.
Pantic I, Paunovic Pantic J. Artificial intelligence in chromatin analysis: a random forest model enhanced by fractal and wavelet features. Fractal Fract. 2024;8(8).
23.
Paunovic J, Vucevic D, Radosavljevic T, Vukomanovic Djurdjevic B, Stankovic S, Pantic I. Effects of iron oxide nanoparticles on structural organization of hepatocyte chromatin: gray level co-occurrence matrix analysis. Microsc Microanal. 2021;27(4):889–96.
24.
Karperien AL, Jelinek HF. Box-Counting Fractal Analysis: A Primer for the Clinician. In: Advances in Neurobiology. 2024. p. 15–55.
25.
Pantic I, Dacic S, Brkic P, Lavrnja I, Pantic S, Jovanovic T, et al. Application of fractal and grey level co-occurrence matrix analysis in evaluation of brain corpus callosum and cingulum architecture. Microsc Microanal. 2014;20(5):1373–81.
26.
Grosu GF, Hopp AV, Moca B, H C, A ER, M W, et al. The fractal brain: scale-invariance in structure and dynamics. Cereb Cortex. 2023;33(8):4574–605.
27.
Hofman MA. The Fractal Geometry of the Human Brain: An Evolutionary Perspective. Adv Neurobiol. 2024;36:241–58.
28.
Metze K. Fractal dimension of chromatin: potential molecular diagnostic applications for cancer prognosis. Expert Rev Mol Diagn. 2013;13(7):719–35.
29.
Davis M, Ifrah G. The Universal Computer: The Road from Leibniz to Turing. Am Math Mon. 2002;109(6).
30.
Mandelbrot BB, Kol B, Aharony A. Angular gaps in radial diffusion-limited aggregation: two fractal dimensions and nontransient deviations from linear self-similarity. Phys Rev Lett. 2002;88(5).
31.
Reljin I, Reljin B. Fractal geometry and multifractals in analyzing and processing medical data and images. Archive of Oncology. 2002;10(4):283–93.
32.
Loh ND, Hampton CY, Martin AV, Starodub D, Sierra RG, Barty A. Erratum: Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight. Nature. 2012;123:11–99.
Citation
Copyright
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
The statements, opinions and data contained in the journal are solely those of the individual authors and contributors and not of the publisher and the editor(s). We stay neutral with regard to jurisdictional claims in published maps and institutional affiliations.