Sharma P, Hawes R, Bansal A. Standard endoscopy with random biopsies versus narrow band imaging targeted biopsies in Barrett’s oesophagus: a prospective, international, randomised controlled trial. Gut. 2013;15–21.
2.
Fiocca R, Mastracci L, Milione M. Microscopic esophagitis and Barretts esophagus: The histologic report. Dig Liver Dis. 2011;319-S330.
3.
Rubio C, Sjödahl K, Lagergren J. Lymphocytic esophagitis: a histologic subset of chronic esophagitis. Am J Clin Pathol. 2006;(3):432–7.
4.
Odze R, Maley C. Neoplasia Without Dysplasia. Lessons From Barrett Esophagus and Other Tubal Gut Neoplasms. Arch Pathol Lab Med. 2010;896–906.
5.
Odze R. Diagnosis and grading of dysplasia in Barrett’s oesophagus. J Clin Pathol. 2006;1029–38.
6.
Brown I, Whiteman D, Lauwers G. Foveolar type dysplasia in Barrett esophagus. Modern Pathology. 2010;834–43.
7.
Lomo L, Blount P, Sanchez C. Crypt dysplasia with surface maturation: a clinical, pathologic and molecular study of a Barrett’s esophagus cohort. Am J Surg Pathol. 2006;423–35.
8.
Lörinc E, Jakobsson B, Landberg G, Veress B. Ki67 and p53 immunohistochemistry reduces interobserver variation in assessment of Barrett’s oesophagus. Histopathol. 2005;(6):642–8.
9.
Kastelein F, Biermann K, Steyerberg E. on behalf of the ProBar-study group. Aberrant p53 protein expression is associated with an increased risk of neoplastic progression in patients with Barrett’s oesophagus. Gut. 2013;1676–83.
10.
Mchugh J, Gopal P, Greenson J. The clinical significance of focally enhanced gastritis in children. Am J Surg Pathol. 2013;295–9.
11.
Agoston A, Odze R. Evidence that gastric pit dysplasia-like atypia is a neoplastic precursor lesion. Human Pathol. 2014;446–55.
12.
Ensari A. Gluten-sensitive enteropathy (celiac disease): controversies in diagnosis and classification. Arch Pathol Lab Med. 2010;826–36.
13.
Greenson J, Stern R, Carpenter S, Barnett J. Hum Pathol. The clinical significance of focal active colitis. 1997;(6):729–33.
14.
Yantiss R, Odze R. Optimal approach to obtaining mucosal biopsies for assessment of inflammatory disorders of the gastrointestinal tract. Am J Gastroenterol. 2009;(3):774–83.
15.
Geboes K, Riddell R, Öst A, Jensfelt B, Persson T, Löfberg R. A reproducible grading scale for histological assessment of inflammation in ulcerative colitis. Gut. 2000;404–9.
16.
Sekirov I, Russell S, Antunes L, Finlay B, B. Gut Microbiota in Health and Disease. Physiol Rev. 2010;859–904.
17.
Maynard C, Elson C, Hatton R, Weaver C. Reciprocal interactions of the intestinal microbiota and immune system. Nature. 2012;231–41.
18.
Hertogh D, Aerssens G, Geboes J, Geboes K, K. Evidence for the involvement of infectious agents in the pathogenesis of Crohn’s disease. World J Gastroenterol. 2008;(6):845–52.
19.
Sears C, Garrett W. Microbes, Microbiota, and Colon Cancer. Cell Host Microbe. 2014;317–28.
20.
Borody T, Khoruts A. Fecal microbiota transplantation and emerging applications. Nat Rev Gastroenterol Hepatol. 2011;(2):88–96.
21.
Hotamisligil G. Inflammation and metabolic disorders. Nature. 2006;860–7.
22.
Berger N. Obesity-associated gastrointestinal tract cancer: from beginning to end. Cancer. 2014;935–9.
23.
Bardou M, Barkun A, Martel M. Obesity and colorectal cancer. Gut. 2013;933–47.
24.
Prins M, Verhage R, Ruurda J. Over-expression of phosphorylated mammalian target of rapamycin is associated with poor survival in oesophageal adenocarcinoma: a tissue microarray study. J Clin Pathol. 2013;224–8.
25.
Fan H, Yuan Y, Wang J. CD117 expression in operable oesophageal squamous cell carcinomas predicts worse clinical outcome. Histopathology. 2013;1028–37.
26.
Lee J, Lee S, Kang S. Identification of ROS1 rearrangement in gastric adenocarcinoma. Cancer. 2013;1627–35.
27.
Okamoto W, Okamoto I, Arao T. Antitumor action of the MET tyrosine kinase inhibitor crizotinib (PF-02341066) in gastric cancer positive for MET amplification. Mol Cancer Ther. 2012;1557–64.
28.
Lasota J, Wang Z, Kim S, Helman L, Miettinen M. Expression of the receptor for type i insulin-like growth factor (IGF1R) in gastrointestinal stromal tumors: an immunohistochemical study of 1078 cases with diagnostic and therapeutic implications. Am J Surg Pathol. 2013;114–9.
29.
Miettinen M, Killian J, Wang Z. Immunohistochemical loss of succinate dehydrogenase subunit A (SDHA) in gastrointestinal stromal tumors (GISTs) signals SDHA germline mutation. Am J Surg Pathol. 2013;234–40.
30.
Snover D. Update on the serrated pathway to colorectal carcinoma. Hum Pathol. 2011;1–10.
31.
Mitrovic B. Tumor budding in colorectal carcinoma: time to take notice. Mod Pathol. 2012;
32.
Lugli A. Intratumoral budding as a potential parameter of tumor progression in mismatch repair-proficient and mismatch repair-deficient colorectal cancer patients. Hum Pathol. 2011;
33.
Galon J. Cancer classification using the Immunoscore: a worldwide task force. Transl Med. 2012;
34.
Lugli A. CD8+ lymphocytes/ tumour-budding index: an independent prognostic factor representing a “pro-/antitumour” approach to tumour host interaction in colorectal cancer. Br J Cancer. 2009;
35.
Capper D. BRAF V600E-specific immunohistochemistry for the exclusion of Lynch syndrome in MSI-H colorectal cancer. Int J Cancer. 2013;
36.
Stein U. MACC1, a newly identified key regulator of HGF-MET signaling, predicts colon cancer metastasis. Nat Med. 2009;59–67.
37.
Tomlinson I. Goudie lecture). 26th European Congress of Pathology. 2014;
Citation
Copyright
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
The statements, opinions and data contained in the journal are solely those of the individual authors and contributors and not of the publisher and the editor(s). We stay neutral with regard to jurisdictional claims in published maps and institutional affiliations.